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Abstract: In this paper, the Homogenous-Hypersurface space time with wet dark  fluid (WDF), which is a 

candidate for dark energy (DE), in the framework of f(R, T) gravity, R and T denote the Ricci scalar and the 

trace of the energy–momentum tensor, respectively (Harko et al. Phys. Rev. D, 84, 024020 (2011)) has been 

investigated. Equation of state in the form of WDF for the DE component of the universe  has been 

considered. It is modeled on the equation of state
)( * p

. The exact solutions to the 

corresponding field equations are obtained for power-law and exponential volumetric expansion. The 

geometrical and physical parameters for both the models are studied.  

Keywords: Dark Energy , Wet Dark Fluid . 

1. Introduction 

It is well known that the recent observational studies [1-5] have well established the accelerated expansion 

of the current universe. The universe consists of 76 % dark energy and 20 % dark matter. Several modified 

theories of gravity have been developed and studied to view of the late time acceleration of the Universe 

and the existence of dark energy and dark matter. There are various modified theories namely 

f(R),f(G),f(R,G) and f(R,T) .Noteworthy amongst them is the  

f (R) gravity theory [6, 7]. One of the interesting and prospective versions of modified gravity theories is the 

f(R,T)gravity proposed by Harko et al. [8] wherein the gravitational Lagrangian is given by an arbitrary 

function of the Ricci scalar R and the trace of the stress energy tensor T . The f(R,T) gravity models can 

explain the late time cosmic accelerated expansion of the Universe. Adhav [9] has obtained Bianchi type I 

cosmological model in f (R,T ) gravity. Several Authors [10-30] studied different cosmological models in 

f(R,T) theory of gravity.
 

Motivated by above discussions and investigations in modified theories, it has been taken up the study of 

Hypersurface-Homogenous perfect fluid cosmological model in f(R,T) gravity. The present paper is 

organized as follows. A brief introduction is given in Sect. 1.In Sect. 2, a concept of wet dark fluid (WDF) has 

been discussed. The field equations in metric version of f(R, T) gravity are given in sect 3. In Sect. 4, 

gravitational field equation in f(R, T) gravity is established with the aid of the Hypersurface-Homogenous 

metric in the presence of WDF. The general discussion on the isotropization is given in Sect. 5.Sections 6 

deals with the cosmological model for the power law. In Sect. 7, the cosmological model is discussed with 

exponential law of the volumetric expansion. Finally, in Sect. 8, conclusions are summarized.  

 

2. Wet Dark Fluid (WDF). 
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WDF is a new candidate for DE in the script of generalized Chaplygin gas, where a physically motivated 

equation of state is offered with the properties relevant for a DE problem. The equation of state for a WDF 

is 

.WDF

WDFp



 

          (1) 

Equation (1) is good approximation for many fluids, including water. The parameter  and
 are taken to 

be positive and restricted to 10  . Note that if sc denotes the adiabetic sound speed in WDF, then 
2

sc

[31]. To find the WDF energy density, the energy conservation equation is used  

  .03 

WDFWDFWDF pH          (2) 

From equation of state (1) and using 
V

V
H


3 in (2) equation, it’s obtain 

 







 



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






11 V

c
pWDF  ,        (3) 

where c is the constant of integration and V is the volume expansion.  WDF naturally includes these 

components, a piece that behave as a cosmological constant as well as a standard fluid with an equation of 

state p . It is shown that if we take 0c , this fluid will not violate the strong energy condition 

0 p . Thus,  

   
 

011
1


















V

c
p WDFWDFWDF      (4) 

Many Relativists [32-42] studied cosmological models with WDF in General Relativity and theories of 

gravitations. 

 

3. Gravitational field equations of ),( TRf  gravity 

The ),( TRf gravity is the generalization of General Relativity (GR). In this theory, the field equations are 

derived from a variation, Hilbert-Einstein type principle which is given as 

xdLgxdTRfgS m

44   ),( 
16

1
 


,      (5) 

where ),( TRf is an arbitrary function of the Ricci scalar )(R and trace of the stress energy tensor )(T of the 

matter ijT  ( ij
ijTgT  ) and mL  is the matter Lagrangian density.  

The stress energy tensor of matter is defined as 

ij

m

ij
g

Lg

g
T

 

)(2



 


 .         (6) 

Assuming that the Lagrangian density mL of matter depends only on the metric tensor components ijg and 

not on its derivatives, in this case  
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


 .          (7) 

The ),( TRf gravity field equations are obtained by varying the action S  with respect to the metric tensor 

components ijg ,  

         ijTijTijjii

i

ijRijijR TRfTTRfTgTRfgTRfRTRf  ,-,8,,
2

1
),(  , (8) 

where 

.22
2





 gg

L
gLgT

ij

m
mijijij




         (9) 

Here
 
R

TRf
f R



 , 
 ,

 
T

TRf
fT



 , 


ijij
g

T
g



   and 
i is the covariant derivative. 

The contraction of equation (8) yields 

         TRfTTRfTRfTRfRTRf TTRR ,-,8,2,3),(  with ij

ijg  .  (10) 

Equation (10) gives a relation between Ricci scalar and the trace of energy momentum tensor. 

Using matter Lagrangian mL  the stress energy tensor of the matter is given by 

ijWDFjiWDFWDFij gpuupT  )(  ,        (11) 

where )1,0,0,0(iu  denotes the four velocity vector in co-moving coordinates which satisfies the 

condition 1i

iuu . WDF and WDFp is energy density and pressure of the fluid respectively. 

The variation of stress energy of perfect fluid has the following expression 

ijijij pgT  2 .          (12) 

On the physical nature of the matter field, the field equations also depend through the tensor ij . Several 

theoretical models corresponding to different matter contributions for ),( TRf gravity are possible. 

However, Harko et al. [8] gave three classes of these models 

 
 
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TfRfRf
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TRf

321

21

 )(

2

, .        (13) 

In this paper, it is focused to the first class )(2),( TfRTRf  , where )(Tf is an arbitrary function of 

tress energy tensor of the form TTf )(  where  is constant. For this choice the gravitational field 

equations of ),( TRf gravity becomes 

      ijijijijijij gTfTfTTfTRgR   228
2

1
 ,     (14) 

where the dot denotes differentiation with respect to the argument. If the matter source is a perfect fluid 

then the field equations (in view of Eq. (12)) becomes 
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      ijWDFijijijij gTfTfpTTfTRgR ]2[28
2

1
  .     (15) 

4. Field equations  

the Hypersurface-Homogeneous space time of the form, 

 22222222 ),()()( dzKydytBdxtAdtds  ,     (16) 

where  tA  and  tB  are the cosmic scale functions, yyyKy sinh,,sin),(  respectively when  

1 ,0 ,1 K .  

Hajj Boutros [43] have obtained exact solution of the field equations Using the metric (16). Solutions of 

Einstein field equations in the presence of perfect fluid have been discussed by Stewart and Ellis [44].The 

exact solutions of the field equations for Hypersurface-homogeneous space time under the assumption on 

the anisotropy of the fluid (dark energy) are obtained for exponential and power-law volumetric expansions 

in a scalar-tensor theory of gravitation by Katore and Shaikh [45]. Katore and Shaikh [46] investigated a 

class of solutions of Einstein’s field equations describing two-fluid models of the universe in Hypersurface-

Homogenous space time. 

The function )(Tf of the trace of the stress–energy tensor of the matter is choose so that 

TTf )(            (17) 

where  is a constant [8].  

Using comoving coordinates and equations (11)–(12) and (17), the ),( TRf gravity field equations, (15), for 

metric (16) can be written as 

   WDFWDFp
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   WDFWDFp
B
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A
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A
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   WDFWDF p
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
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



382

2

2 
      (20) 

where a dot hereinafter denotes ordinary differentiation with respect to cosmic time “t” only. 

5. Isotropization and the solution 

The isotropy of the expansion can be parametrized after defining the directional Hubble’s parameters and 

the average Hubble’s parameter of the expansion.  The directional Hubble parameters in the directions 

zyx ,,  for the Hypersurface-Homogenous metric defined in (16) may be defined as follows: 

A

A
H x


 and

B

B
HH zy


          (21) 

The mean Hubble parameter, H, is given by 











B

B

A

A

V

V

R

R
H


2

3

1

3

1
         (22) 

where R is the mean scale factor and 
23 ABRV  is the spatial volume of the universe. 

The anisotropy parameter of the expansion  is defined as 
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 
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3

1
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3

1

i

i

H

HH
          (23) 

in the zyx ,,  directions, respectively. 0 corresponds to isotropic expansion. 

Let us introduce the dynamical scalars, such as expansion parameter )(   and the shear )( 2 as usual 

H3            (24) 

22

2

3
H  .          (25) 

Since field equations (18)–(20) are three equations having four unknowns and are highly nonlinear, an extra 

condition is needed to solve the system completely. Here two different volumetric expansion laws is used 
batV             (26) 

and 
teV  ,           (27) 

where a, b,  ,  are constants. In this way, all possible expansion histories, the power law expansion, (26), 

and the exponential expansion, (27), have been covered. 

6. Model for Power law 

Here two interesting cases are discussed. 

Case I a) When VB  . 

Using (26), the scale factors are obtained as follows: 

1A             (28) 

and 

22

1 b

taB  .           (29) 

From (3) and (1) with the help of (26), the energy density  WDF  and pressure  WDFp of the WDF are 

obtained as 

  









 











11 b
WDF

at

c
        (30) 

and 

 













 




 11b

WDF

at

c
p  .        (31) 

From equation (22), the mean Hubble’s parameter, H, is given by 

.
3t

b
H 

           
(32) 

The mean anisotropic parameter is obtained as  

2

1
 .            (33) 

The Scalar expansion is given by 

t

b
 .            (34) 
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The Shear Scalar  

2

2
2

12t

b
 .           (35) 

At the initial epoch, the Hubble parameter and the shear scalar are infinitely large.  It is observed that the 

volume of the universe expands indefinitely for all positive values of b. The spatial volume, V, is zero at 

0t . Thus the universe starts evolving with zero volume at 0t and expands with cosmic time.  

The deceleration parameter 

1
3


b
q            (36) 

Case I b) When VA  . 

Using (26), the scale factors are as follows: 
batA             (37) 

and 

1B .            (38) 

From (3) and (1) with the help of (26), the energy density  WDF  and pressure  WDFp of the WDF are 

obtained as 

  





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










11 b
WDF
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c
        (39) 

and 

 
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










 




 11b

WDF

at

c
p  .        (40) 

From equation (22), the mean Hubble’s parameter, H, is given by 

.
3t

b
H 

           
(41) 

The mean anisotropic parameter is obtained as  

2 .            (42) 

The Scalar expansion is given by 

t

b
 .            (43) 

The Shear Scalar  

2

2
2

3t

b
 .           (44) 

The deceleration parameter 

1
3


b
q            (45) 

At the initial epoch, the Hubble parameter and the shear scalar are infinitely large.  For large t , the model 

tends to be isotropic. For 3b the deceleration parameter is negative. The model represents an accelerated 

universe.  
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7. Model for exponential law 

Here two interesting cases are discussed  

Case I a) When VB  . 

Using (27), the scale factors are as follows: 

1A             (46) 

and 

22

1 t

eB



 .           (47) 

From (3) and (1) with the help of (27), the energy density  WDF  and pressure  WDFp of the WDF are 

obtained as 

  









 











11 t
WDF

e

c

        

(48) 

and 

 













 








 11t

WDF

e

c
p  .       (49) 

From equation (22), the mean Hubble’s parameter, H, is given by 

.
3


H

           
(50) 

The mean anisotropic parameter is obtained as  

2

1
 .            (51) 

The Scalar expansion is given by 

  .            (52) 

The Shear Scalar  

12

2
2 

  .           (53) 

The deceleration parameter 

1q  .           (54) 

The model represents an accelerated universe. Therefore the model is consistent with the cosmological 

observations. 

Case I b) When VA  . 

Using (27), the scale factors are as follows: 
teA             (55) 

and 

1B .            (56) 

From (3) and (1) with the help of (27), the energy density  WDF  and pressure  WDFp of the WDF are 

obtained as 
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  









 





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(57) 

and 

 













 








 11t

WDF

e

c
p  .       (58) 

From equation (22), the mean Hubble’s parameter, H, is given by 

.
3


H

           
(59) 

The mean anisotropic parameter is obtained as  

2 .            (60) 

The Scalar expansion is given by 

  .            (61) 

The Shear Scalar  

3

2
2 

  .           (62) 

The deceleration parameter 

1q             (63) 

The expansion scalar,  )( is constant throughout the evolution of the universe. The ratio of shear scalar to 

expansion scalar is non zero i.e. the universes is anisotropic .It is obtained the deceleration parameter 

1q  and 0dtdH  for this model. Hence, it gives the greatest values of the Hubble parameter and 

the fastest rate of expansion of the universe. The model may represent the inflationary era in the early 

universe and the very late time of the universe. 

8. Conclusion: 

Evolution of Hypersurface-Homogenous cosmological models is studied in the presence of dark energy 

(DE) from a wet dark fluid (WDF) in f(R,T) theory of gravity [8]. The exact solutions of the field equations 

have been obtained by assuming two different volumetric expansionlaws in a way to cover all possible 

expansion: namely, exponential expansion and power-law expansion. The deceleration parameter for 

exponential model is q=-1 and it predicts an accelerated expansion which resembles with Sahoo et. al.[47]. 
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